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ABSTRACT 
 

 

The MCNP6 code has being upgraded to treat Cerenkov radiation emission. 

Emission is performed using the Frank-Tamm Cerenkov theory with piecewise-

constant coefficients. This document discusses preliminary verification efforts for 

the Cerenkov feature. Tests were conducted using MCNP6 version 

MCNP6_Beta3_branch_r. The Frank-Tamm formulation has been coded in an 

auxiliary Perl script cr.pl. Comparisons of the photon production per wavelength 

bin and the aggregate photon production are made for 4-MeV electrons and 4000-

MeV alphas in water using MCNP6 and cr.pl.  The agreement is excellent. 

Verification calculations for the spectrum of light emerging from the surface of 

the water are presented for constant, Cauchy, and Sellmeier treatments of the 

refractive index. Efforts to conduct validation studies were limited by lack of time 

and limited useful measured data. 

 

___________________________________________ 

 

KEYWORDS: MCNP6; Cerenkov. 

 

mailto:jdurkee@lanl.gov


  

                                                                      2 

 

Contents 
 

1. Introduction ............................................................................................................................. 4 
2. Cerenkov Radiation ................................................................................................................. 5 

2.1. Electromagnetic Spectrum ............................................................................................... 5 
2.2. Cerenkov Radiation and the Frank-Tamm Theory .......................................................... 7 
2.3. Refractive Index Formulations ....................................................................................... 14 
2.4. MCNP6 Cerenkov Feature ............................................................................................. 24 

3. Verification Simulations ........................................................................................................ 24 

3.1. Test 1: 4-MeV Electrons in Water ................................................................................. 25 
3.2. Test 2: 4000-MeV alphas in Water ................................................................................ 33 

4. Validation Simulations .......................................................................................................... 38 
5. Summary and Conclusions .................................................................................................... 39 

References ..................................................................................................................................... 40 

 

Figures 
 

Figure 1.  Cerenkov, Frank, and Tamm (nobelprize.org).......................................................... 5 
Figure 2a.  Electromagnetic spectrum (www.lbl.gov). ............................................................... 6 
Figure 2b.  Electromagnetic spectrum (www.cosmosportal.org). ............................................... 6 

Figure 3 shows a breakdown of the visible spectrum by frequency and wavelength. .................... 7 
Figure 3.  Visible spectrum (http://en.wikipedia.org/wiki/Visible_spectrum). ......................... 7 

Figure 4.  Polarization inducement by a charged particle moving through matter. Left: 

relatively slow movement. Right: relatively fast movement (Jelley, 1958, Fig. 1.1). .................... 8 
Figure 5.  Huygens construction to illustrate coherence (Jelley, 1958, Fig. 1.2). ..................... 9 

Figure 6. Cauchy and Sellmeier refractive index in water at 20C. MCNP6 and cr.pl results 

overlay to within resolution. ......................................................................................................... 27 
Figure 7. Cerenkov emission spectrum for 4-MeV electrons in water calculated using MCNP6 

(patched) and cr.pl. Identical results are obtained using both codes. ........................................... 28 

Figure 8. Cerenkov emission spectrum at the surface of the water for 4-MeV electrons in water 

calculated using MCNP6 (patched). NPS = 1000 (left) and 10000 (right). .................................. 31 

Figure 9. CDFs for 4-MeV electrons in water calculated using Cauchy and Sellmeier 

formulations. ................................................................................................................................. 32 

Figure 10. Sampled photon emission in subroutine emit_cerenkov.F90 for 4-MeV electrons in 

water calculated using Cauchy and Sellmeier formulations. ........................................................ 33 
Figure 11. Cerenkov emission spectrum for 4000-MeV alphas in water calculated using 

MCNP6 (patched) and cr.pl. Identical results are obtained using both codes. ............................ 35 
Figure 12. Cerenkov emission spectrum at the surface of the water for 4000-MeV alphas in 

water calculated using MCNP6 (patched). ................................................................................... 36 
Figure 13. CDFs for 4000-MeV alphas in water calculated using Cauchy and Sellmeier 

formulations. 37 
Figure 14. Sampled photon emission in subroutine emit_cerenkov.F90 for 4-MeV electrons in 

water calculated using Cauchy and Sellmeier formulations. ........................................................ 38 

 

 

 



  

                                                                      3 

 

 

 
Acronyms 

 
ENDF Evaluated Nuclear Data File 

LANL Los Alamos National Laboratory 

MCNP6 LANL Monte Carlo radiation transport code 



  

                                                                      4 

 

1. INTRODUCTION 

 

     MCNP6 (Goorley et al., 2011) is a Monte Carlo particle (radiation quanta) radiation-transport 

code that is developed at Los Alamos National Laboratory (LANL). MCNP6 offers an 

assortment of features that provide detailed modeling and assessment capabilities. These features 

include three-dimensional (3-D) geometry modeling, continuous-energy transport, transport of 

36 different types of fundamental particles as well as 2000+ types of heavy ions, delayed neutron 

and gamma radiation treatment, isotopic transmutation, the interaction of low- and high-energy 

radiation with matter, a variety of source and tally options, interactive graphics, and support for a 

variety of sequential and multiprocessing computer platforms. MCNP6 has a world-wide user 

base consisting of approximately 10000 researchers, designers, and analysts whose applications 

encompass accelerator design, nuclear reactor physics, isotopic transmutation, cancer diagnostics 

and therapy, geophysics, active and passive interrogation involving prompt and delayed 

radiation, and space applications.  

 

     MCNP6 has recently been updated to treat photon transport with energies down to 1eV. With 

this upgrade, Cerenkov photon generation is now being added. 

 

     In the following section, the theory of Cerenkov radiation is briefly reviewed. Formulations 

that are being implemented in MCNP6 are then developed. Section 3 presents verification 

efforts. 
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2. CERENKOV RADIATION 

 

     Cerenkov emission was discovered in 1934 (Cerenkov, 1934). Theoretical study of the 

phenomenon followed in 1937 (Frank and Tamm, 1937) using classical electrodynamics (Frank 

and Tamm, 1937) and later by Fermi (Fermi, 1940). We provide a brief review of the theory and 

the formulations implemented in MCNP6. For context purposes, the following section is 

included to illustrate where optical photons exist within the extent of the electromagnetic 

spectrum. Figure 1 contains images of Cerenkov, Frank, and Tamm. 

      
 

Figure 1.  Cerenkov, Frank, and Tamm (nobelprize.org). 

 

2.1. Electromagnetic Spectrum 

 

    MCNP6 can treat photon transport down to 1 eV. Optical photons have energies on the order 

of a few eV, as illustrated in electromagnetic spectrum shown in Figures 2a and 2b. 
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Figure 2a.  Electromagnetic spectrum (www.lbl.gov). 

 

Figure 2b.  Electromagnetic spectrum (www.cosmosportal.org). 

http://www.cosmosportal.org/
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Figure 3 shows a breakdown of the visible spectrum by frequency and wavelength. 

Color 
Frequency Wavelength  

violet 
668–789 THz 380–450 nm 

blue 
606–668 THz 450–495 nm 

green  
526–606 THz 495–570 nm 

yellow 
508–526 THz 570–590 nm 

orange 
484–508 THz 590–620 nm 

red  
400–484 THz 620–750 nm 

 

Figure 3.  Visible spectrum (http://en.wikipedia.org/wiki/Visible_spectrum). 

2.2. Cerenkov Radiation and the Frank-Tamm Theory 

 

     A qualitative explanation of Cerenkov emission is gleaned as follows. The polarization 

phenomenon is illustrated in Fig. 4 (Jelley, 1958), where the circles represent individual atoms. 

In the absence of the moving charged particle, the atoms are roughly spherical in shape. As the 

charged particle moves through the medium, its electric field distorts the atoms so that the 

electrons are displaced to one side and the nuclei to the other thus forming dipoles. The medium 

becomes polarized about the point P. At relatively low speeds, relative symmetry of the 

aggregated polarization field surrounds the passing particle so that there is virtually no resultant 

field at large distances and, therefore, no radiation.  

http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Violet_%28color%29
http://en.wikipedia.org/wiki/Blue
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/Orange_%28color%29
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Visible_spectrum
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Figure 4.  Polarization inducement by a charged particle moving through matter. Left: relatively 
slow movement. Right: relatively fast movement (Jelley, 1958, Fig. 1.1). 

 

     At relatively high velocities, the polarization field is asymmetric along the path of the particle 

and extends to some distance from the path. The inducement of this field causes the brief 

radiation of an electromagnetic pulse. If the velocity of the particle is greater than the phase 

velocity of the light in the medium, the radiated wavelets can be in phase so that, at a distant 

point of observation, there is a resultant field. This radiation is only observed at a particular angle 

  with respect to the track of the particle. To develop a relationship between the light and the 

angle, consider Fig. 5. 
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Figure 5.  Huygens construction to illustrate coherence (Jelley, 1958, Fig. 1.2). 

 

If the velocity of the particle is c , where c is the speed of light in a vacuum, then in a time 

t the particle will move a distance AB c t  and the light a distance ( / )AC t c n   , where 

n is the refractive index of the medium. Then  

 
1

cos
n




 . (1) 

 

     The Cerenkov theoretical treatment depicts a charged particle passing through matter in 

which the nearby electrons are treated as classical oscillators. The electrons are set in motion by 

the electric field of the passing particle. The field of the charged particle is affected by the 

polarization of the medium. The Frank-Tamm theory (Frank and Tamm, 1937) was developed 

using the following simplifying assumptions (Jelly, 1958): 

 

(1) The medium is considered as a continuum so that microscopic structure is ignored. The 

dielectric constant is the only parameter used to describe the behavior of the medium. 

(2) Dispersion is ignored. 
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(3) Radiation reaction is neglected. 

(4) The medium is assumed to be a perfect isotropic dielectric so the conductivity is zero, the 

magnetic permeability is unity, and there is no radiation absorption. 

(5) The particle is assumed to move at constant velocity; i.e., the slowing down due to 

ionization and the multiple Coulomb scattering are ignored. 

(6) The medium is unbounded and the track length infinite. 

 

     The byproduct of the development is the Frank-Tamm expression for the energy loss per unit 

path of a charged particle in a medium as given by 

 

 
2 2

2 2 2

1

1
1

n

dW e z
d

dl c n


 




 
  

 
 . (2) 

 

For an electron, the energy loss is of the order of several keV per cm, or ~0.1% of the energy 

loss by ionization. 

 

     Usage of Cerenkov radiation with MCNP6 causes our interest to center on photon emission 

rather than energy loss. Photon emission can be related to the energy loss expression in Eq.(2) 

using Plank’s quantum equation (Wehr and Richards, 1967),
1
 

 

 E h (MeV/photon). (3) 

 

The number of photons N emitted is thus related to the energy loss according to 

 

                                                 
1
 Radiation is emitted in discrete amounts rather than continuously. 
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 W N h  (MeV). (4) 

 

The energy emitted per unit path per unit frequency interval is  

 
2 2 2

2 2 2

1
1

d W e z

dld c n


 

 
  

 
 (MeV/cm-s) (5) 

 

The number of photons emitted per unit path per unit angular frequency interval is  

 
2 2 2

2 2 2

1
1

d N e z

dld hc n 

 
  

 
. (6) 

 

where  

 
2

h
h


 . (7) 

 

The frequency   of the light is related to the angular frequency  according to  

 

 2   (s
-1

). (8) 

 

The frequency   of the light is related to the wavelength  as 

 

 
c




  (s
-1

), (9) 

 

where c is the speed of light. 

 

The number of photons emitted per unit path per unit frequency interval is  

 
2 2 2 2 2

2 2 2

1 4 1
1

d N d N e z

dld dld h hc n



   

 
    

 
 (photons/cm-s). (10) 
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For constant parameters, 

 
2

2 2

2 1

1 1 1
2 1

dN
z

dl n


  

  
    

  
 (photons/cm), (11) 

 

where   is the fine structure constant 

 

 
2 1

137.0393

e

hc
    . (12) 

 

For piecewise-constant parameters 

 

 
2

2 2
1 1

1 1 1
2 1

I

i i i i i

dN
z

dl n


   

  
    

  
  (photons/cm). (13) 

 

 

Integration over the path length given piecewise-constant parameters gives the total photon 

emission. 

 
2

2 2
1 1

1 1 1
2 1

I

i i i i i

N Lz
n


   

  
    

  
  (photons) (14) 

 

 

Equation (14) forms the basis of the technique used in MCNP6 to do Cerenkov photon emission. 

The technique parallels that used for other types of emission, including delayed gamma-rays 

(Durkee et al., 2009). Emission is done by first determining the integer number of emitted 

photons NMCNP6 to be according to 

 

 6 ( )MCNPN INT N rang   (photons), (15) 
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where INT is the Fortran integer operator and rang is the MCNP6 random number function.
2
 The 

value of L is determined by the charged-particle condensed-history routine and is passed to the 

Cerenkov routine.  

 

     Next, the emission wavelength is determined using the cumulative distribution sampling 

function (CDF). For a constant refractive index, integration of Eq.(10) over length L over 

wavelength gives 

 
1

2

1

2

1

2

2 1

1 1

( )

1 1

d N

N dld r
d NN

dld









  

 



    







 . (16) 

 

where r is a random number between 0 and 1. Eq.(16) can be solved analytically to give the 

sampled wavelength  

 
 

1 2

1 2 2r

 


  


 
 . (17) 

 

For a piecewise constant refractive index,  

 

2 2
1 1

2 2
1 1

1 1 1
1

1 1 1
1

j

i i i i i

j I

i i i i i

n
r

n

  

  

 

 

  
   

  
  

  
   

  




 . (18) 

 

 

which is equated to a random number r between 0 and 1. The index j is then determined such that 

j rang  to give the emission band for wavelength j . Sampling of the emission wavelength 

within the band between –1i and i is then done using another random number
3
 so that 

                                                 
2
 The rang function generates random numbers between 0 and 1. 
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  1 1i i ir         . (19) 

 

     The time at which Cerenkov photon emission occurs is considered to be instantaneous. Thus, 

there is no sampling algorithm for emission time.
4
  

 

 

2.3. Refractive Index Formulations 

 

     It is necessary to develop formulations for the refractive index of matter. The theory uses 

concepts from Maxwell’s electrodynamics and atomistic theory. Matter is treated as continuous 

in Maxwell’s theory, yielding a refractive index that is independent of the light wavelength. 

Experimental observations show that refraction is frequency dependent. An accounting of the 

atomic structure of matter is required to develop formulations for the refractive index that are 

wavelength dependent. 

 

     An initial formulation for the refractive index is developed by considering the interaction of 

an electromagnetic wave with matter using classical electrodynamics. Maxwell’s equations in a 

medium are (Born and Wolf, pp. 1–2) 

 

1 4

1
0

4

0

D
H j

c t c

B
E

c t

D

B






  




  



  

  

 , (20) 

 

                                                                                                                                                             
3
 The process parallels that for multigroup delayed-gamma emission (Durkee et al., 2009). 

4
 See Durkee et al. 2009 for treatment of finite emission time. 
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where E  and B  are the electric field and magnetic induction vectors, respectively. To describe 

the effect of the field on matter, the electric current density j , electric displacement D , and 

magnetic vector H are used and the electric charge density   is introduced. The field 

vectors E , B , D , H , and j  are uniquely determined using supplemental relations to describe 

the behavior of matter caused by the fields. For time-harmonic fields, matter at rest, and isotropic 

material, these constitutive relations have the simple form 

 j E  , (21) 

 

 D E  , (22) 

and 

 B H  , (23) 

 

where  ,  , and   are the specific conductivity, dielectric constant, and magnetic permeability. 

Materials for which   is small are called insulators or dielectrics. Their electric and magnetic 

properties are completely determined by , and . For nonmagnetic substances,  is close to 

unity. Materials are termed to be paramagnetic diamagnetic when 1   and 1  , respectively.  

 

     Optical photon transport can be formulated for nonconducting ( 0  ) and conducting 

( 0  ) media. Media in which light propagates without appreciable weakening (e.g., air, water, 

glass) are termed transparent. These media are nonconductors — there is little loss of 

electromagnetic energy and little Joule heat. The following development and the MCNP6 feature 

treats optical photon transport in nonconducting media. 

 

     For a dielectric (non-conducting) medium, application of Maxwell’s equations to a plane 

electromagnetic wave incident on a plane boundary between two homogeneous media yields a 
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refractive index that is a function of the dielectric constant   and magnetic permeability  of the 

medium (Born and Wolf, pp.10–13) 

 n   . (24) 

 

For many nonmagnetic materials of interest,   is effectively unity (Born and Wolf, p. 13). Thus, 

the index of refraction given by Eq. (24) depends on the dielectric constant   and is independent 

of the frequency of the electromagnetic wave (Born and Wolf, 1980, p.10–13).  Equation (24) is 

reasonably valid for substances such as gases with a simple chemical structure which does not 

disperse light substantially; i.e., for substances whose optical properties are relatively invariant 

with the frequency of light. 

  

     The (absolute) refractive index is also measure of the ratio of the speed of an electromagnetic 

wave in vacuum to that in a medium (Hecht, 1990) as given by  

 
c

n
v

  . (25) 

 

     Experimental results show that, in general, the refractive index is frequency dependent. This 

constitutes the phenomenon of dispersion (Born and Wolf, 1980, p. 90). The dependence of the 

dielectric parameter   and the index of refraction n is treated by taking into account the atomic 

structure of matter (Born and Wolf, 1980, p 13). Electromagnetic field theory itself is inadequate 

in treating emission, absorption, and dispersion of light.   

 

     The interaction of an electromagnetic field with matter can be done using a simple model. 

The vectors B and D are expressed as the sum of two terms, the first treating the vacuum field 
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and the second arising from the influence of matter. Two new vectors describe the effects of 

matter: the electric polarization P and the magnetic polarization M . Thus, instead of using 

Eqs.(22) and (23), we have 

 4D E P   . (26) 

 

and 

 4B H M   . (27) 

 

These expressions portray the production of polarization P and M in a volume element by the 

electromagnetic field (see Fig. 4) that is, to first order, proportional to the field. Each volume 

element contains a source of a secondary or scattered wavelet. The total field is comprised of the 

incident field and the combination of all secondary wavelets. 

 

     In the atomic theory the interaction of particles (atoms and molecules) are modeled. These 

particles produce a field which varies inside the matter. This internal field is modified by any 

externally applied field. The properties of the matter are derived by averaging over the total field 

within the matter. If the region over which the averaging is done is large compared to the linear 

dimensions of the particles, the electromagnetic properties of each can be simply described by an 

electric and a magnetic dipole. The secondary field is then the field caused by these dipoles. In 

this approximation it is assumed that P and M are proportional to E and H so that 

 

 P E  . (28) 

 

and 
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 M H  . (29) 

 

Using Eqs.(22), (23), (28), and (29) we see that 

 

 1 4    . (30) 

 

and 

 

 1 4    . (31) 

 

Thus, atomistic theory can be formulated such that the matter is regarded as made of molecules 

which are polarizable so that under the influence of an external field they exhibit electric and 

magnetic moments. As an approximation, it may be assumed that the components of these 

moments are linear function of the field components. The formulations are dependent on the 

nature of the matter. Here we confine our attention to isotropic, non-magnetic substances. 

 

     The total field E  acting on a molecule is comprised of (1) the mean field E  in a region 

surrounding the molecule and containing many molecules, and (2) the field inside of the region 

surrounding the molecule caused by several molecules surrounding the central molecule.  It can 

be shown that (Born and Wolf, pp. 85–86) 

 
4

3
E E P


   . (32) 

 

     The assumption is made that, for each molecule, the electric dipole moment p caused by the 

electric field is proportional to the field so that 

 

 pp E  , (33) 

 



  

                                                                      19 

 

where 
p is the mean polarizability. The total polarization due to all N molecules is 

 

 pP Np N E   . (34) 

 

Eliminating E  from Eqs.(32) and (33) with (34), the dielectric susceptibility   is  

 

 
4

1
3

p

p

N

N











 . (35) 

 

Substituting this into Eq.(30) gives 

 

8
1

3
4

1
3

p

p

N

N















 . (36) 

 

Using Maxwell’s relation between the dielectric parameter   and the index of refraction n as 

given in Eq.(24) for a dielectric medium ( 1  ), Eq.(36) can be rewritten as 

 
2

2

3 1 3 1

4 2 4 2
p

n

N N n




  

 
 

 
 , (37) 

 

which is known as the Lorentz-Lorenz formula. This expression connects Maxwell’s theory with 

the atomistic theory of matter, providing a link between the mean polarizability 
p  and the index 

of refraction n. 

 

     Given the link between Maxwell’s field theory and the atomistic theory provided in Eqs.(26)–

(37), a simplified model of the dispersion of light in a nonconducting medium can be modeled as 
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follows (Born and Wolf, pp. 91–97). First, the displacement r of each electron in the medium 

from its equilibrium position is found.  The displacement is characterized using the Lorentz force 

law 

 
v

F Q E B
c

 
   

 
 , (38) 

 

 

where Q is the charge of the electron. The electron behaves, to a good approximation, as an 

oscillator with respect to its equilibrium position according to the quasi-elastic restoring force 

 

 
e rF q r   , (39) 

 

where rq  is the restoring-force constant. Letting m denote the mass of the electron, its equation 

of motion is 

 
rmr q r QE   . (40) 

 

Denoting  to be the angular frequency of the incident field,  

 

 
0

i tE E e   , (41) 

 

and taking  

 
0

i tr r e   , (42) 

 

then 

 
 2 2

0

QE
r

m  



 , (43) 

where 
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 0

q

m
   (44) 

 

is the resonance (or absorption) frequency. According to Eq.(43) the electron oscillates with the 

frequency of the incident field. 

 

     Each electron contributes to the polarization a moment (neglecting the contributions from the 

nuclei) 

 p Qr  . (45) 

 

Using Eqs.(34), (43), and (45), the total polarization is  
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Using Eqs.(34) and (46), 
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Substituting Eq.(47) into Eq.(37) gives 
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which is the expression for the frequency dependent refractive index. 

 

     Equation (48) is problematic when 
0  . The matter is resolved by including a damping 

contribution to the equation of motion to represent energy dissipation (due to collisions between 

the atoms).  With the damping force, equation of motion becomes 

 mr gr qr QE    , (49) 

 

so that the displacement is  
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QE
r
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 . (50) 

 

The polarization is thus a complex quantity. 

 

     Matter actually has many resonant frequencies. Thus, Eq.(48) generalizes to 
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where kNf is the number of electrons corresponding to the resonance frequency k . 

 

     For gases 1n , so that Eq.(51) can be simplified to 
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where 
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and  

 
2

k
k

k
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Following the application of mathematical identities and series expansions for Eq.(52), the 

Cauchy form for the wavelength-dependent refractive index for a dielectric (non-conducting) 

medium  

 
2 4 6

( )
B C D

n A
  

      (55) 

 

 

is obtained.  The validity of Eq.(55) is predicated on the assumption that 1n , which is the case 

for gases.      

 

     For substances of high density, i.e. liquids or solids, it is not permissible to replace n by unity 

in the denominator of term two in Eq.(51). In this case, it can be shown that the expression   
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is obtained.  This frequency-dependent expression for the refractive index is known as the 

Sellmeier dispersion formula (Born and Wolf, 1980, p. 97).  
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     More complicated formulations that include temperature and pressure dependence are found 

in the literature (Schiebener et al., 1990), but these are not currently supported in MCNP6. 

 

2.4. MCNP6 Cerenkov Feature 

 

      

     The MCNP6 Cerenkov feature can be executed using analog or nonanalog photon creation. 

Because large numbers of Cerenkov photons can be created by each charged particle, it is 

advisable to use biased creation. Biasing will limit the number of photons created, while 

preserving tally data. 

 

     The refractive index can be calculated using three formulations. These formulations are 

appropriate for optical photon transport in nonconducting media: 

(1) A constant, frequency-independent refractive index. 

(2) The four-term Cauchy formula can be used to calculate the frequency-dependent 

refractive index. This is most suitable for gases. 

(3) The three-term Sellmeier frequency-dependent refractive index. This is most suitable for 

liquids and solids. (Born and Wolf, 1980, pp. 93–97).   

 

3. VERIFICATION SIMULATIONS 

 

     We are interested in demonstrating that the MCNP6 Cerenkov emission functions correctly. 

This interest includes a demonstration that emission as a function of wavelength is treated 

properly. 
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     Verification simulations have been executed to confirm that the MCNP6 Cerenkov emission 

executes as desired. Perl script cr.pl was written to calculate Cerenkov photon emission given 

piecewise constant parameters prescribed by Eq.(14).  For direct comparison of the MCNP6 and 

cr.pl results, a write statement was implemented in MCNP6 subroutine emit_cerenkov to 

provide the termwise photon yields for Eq.(14). MCNP6 and cr.pl calculations were executed for 

(1) each term in the series and (2) the total number of emitted photons. This treatment ignores 

photon transport in the medium which can be done by MCNP6 but is not done by cr.pl. 

 

     MCNP6 does Cerenkov emission for each source charged-particle in a history. Each source 

particle is emitted at the stipulated source energy. Condensed history treatment is done to 

transport each charged particle. The algorithm determines a step size, which is passed to the 

Cerenkov subroutine for use as the value L in Eq.(14). For the verification simulations, a write 

statement was used to provide this value for the initial step in the condensed history transport of 

the source particle. This value was then used in cr.pl to calculate the total photon emission. 

 

     The test problems include (1) 4-MeV electrons in water and (2) 4000-MeV alphas in water. 

 

     The MCNP6 calculations were executed using an Intel serial build on the Pete cluster. The 

directory is: /home/jdurkee/old_pete/MCNP6_CRNKV. 

 

 

3.1. Test 1: 4-MeV Electrons in Water 

      

     The MCNP6 model consists of a point source of 4-MeV electrons in a sphere 2 mm in 

diameter. Photon production is calculated by the emission formula in Eq.(14). The refractive 
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index is calculated using the Cauchy and Sellmeier expressions given in Eqs.(55) and (56), 

respectively. Data for the Cauchy coefficients are A = 1.3199, B = 6.878e-2, C = 1.132e-3, D = 

1.14e-4 (Kohl et al., 1995).
5
 The Sellmeier coefficients are B1 = 5.6840-e-1, C1 = 5.1018e-3, B2 

= 1.7262e-1, C2 = 1.8211e-2, B3 = 2.0862e-2, C3 = 2.6207e-2 (Daimon and Masumra, 2007).
6
  In 

addition, a calculation is executed using the first term in the Cauchy formulation for the 

refractive index, 1.3199 (―constant‖ calculation). 

 

 

     The MCNP6 refractive-index calculations were executed using file inpcr.  The calculations 

were executed with a serial Intel build on the Pete cluster. One history was executed. Print 

triggers were placed in subroutine emit_cerenkov.F90 to provide the calculated refractive index 

data. 

 

     MCNP6 calculated the value L = 5.7432e-2 cm for the first condensed-history step for a 4-

MeV electron in water. This value is used in cr.pl for the analytic refractive-index calculations. 

 

     Figure 6 shows plots of the index of refraction of water at 20C using the Cauchy and 

Sellmeier expressions and coefficient calculated using MCNP6 and cr.pl. Appreciable difference 

in the refractive index for the two formulations is apparent. According to the theory, the Cauchy 

expression is appropriate for gases, while the Sellmeier expression is more suitable for liquids 

(Born and Wolf, 1980, pp. 93–97). We simply report this observation – it does impact the photon 

                                                 
5
 The cited research used the Cauchy expression to characterize the refractive index for water. Given the theoretical 

development in Eqs.(52)–(56), the use of the Cauchy formulation may not be valid. We do not debate validity here, 

but simply note the issue and apply the formulation.  
6
 Daimon and Masumura provide coefficients for a four-term expansion. We use terms 1–3 in our testing using their 

data for 20 C in accordance with Eq.(56). 
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production. According to the literature, the wavelength-independent refractive index for water is 

1.33 (Jelley, 1958, p. 24). Thus, the Cauchy data appear to be high. 

 

 

 
 

Figure 6. Cauchy and Sellmeier refractive index in water at 20C. MCNP6 and cr.pl results 
overlay to within resolution.  

 

 

     Figure 7 shows the results calculated using MCNP6 and cr.pl for the termwise evaluation of 

Eq.(14) and the Cauchy and Sellmeier refractive index formulations in Eqs.(55) and (56). The 

MCNP6 and cr.pl results are identical for the Cauchy and Sellmeier formulations. The emission 

for the Cauchy and Sellmeier formulations is in good agreement above 0.35 m.  At shorter 

wavelengths, the predictions diverge – likely due to the Cauchy and Sellmeier coefficients and/or 

regimes of applicability.  
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Figure 7. Cerenkov emission spectrum for 4-MeV electrons in water calculated using MCNP6 
(patched) and cr.pl. Identical results are obtained using both codes. 

The total number of emitted photons calculated using the three refractive-index formulations are 

listed in Table 1. All results are dentical for MCNP6 and cr.pl. The predictions for the Cauchy 

refractive index are almost 30% greater than that for the constant refractive index. The prediction 

made using the Sellmeier data are within 10% of the prediction made using the constant 

refractive index. 

 

 
Table 1.  Total Cerenkov emission for 4-MeV electrons in 5.7432e-2 cm water 

calculated using Eq.(14) 

Refractive Index 

Formulation 

     Total Cerenkov 

    Photon Emission 

Constant             41.5              

Cauchy             53.1            

Sellmeier             45.1            
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     The MCNP6 surface-integrated ―F1‖ tally was used to register the number of optical photons 

crossing the surface of the water sphere. This tally calculates the number of photons in an energy 

bin. Comparison against the optical-photon source, shown in Fig. 6, requires conversion of the 

tally to wavelength bin. The relation is given using Planck’s relation in Eq.(3) and the 

relationship between the wavelength and frequency of light given in Eq.(9). Thus,  

 
hc

E
  ( m ). (57) 

 

The conversion of an energy bin to a wavelength bin is 
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1 1
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(MeV). (58) 

 

The number of particles contributing to a tally #1F in an energy bin is related to the number of 

particles crossing a surface by  

  # 11 1E i iF F E E    (photons). (59) 

 

Using Eqs.(58) and (59), the number of particles contributing to a tally in a wavelength bin is  

 1
#

1

1 1 i i

i i

F F hc

 

 




 
  

 
(photons). (60) 

 

The number of photons in an energy bin is thus equal to the number in a wavelength bin.  

 

     The MCNP6 optical photon emission calculations were also executed using inpcr.  The 

calculations were executed with a serial Intel build on the Pete cluster (with deactivated print 

triggers for the refractive index in subroutine emit_cerenkov.F90). The F1 tally data were 

calculated using 200 bins between 1 eV and 1 keV and 20 bins between 1 keV and 1 MeV.  The 
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calculations were executed using 1000 and 10000 source electron histories. Execution using the 

constant, Cauchy, and Sellmeier expressions with 1000 source histories required 0.47, 0.30, and 

0.27 minutes, respectively, while execution using 10000 histories required  2.9, 3.7, and 3.2 

minutes, respectively. Relative uncertainties in the F1 tallies for most of the optical spectrum 

(0.2 to 0.8 m or 6.208e-6 to 1.552e-6 MeV) were less than 0.05 using 1000 histories and less 

than 0.01 using 10000 histories. 

 

    Equation (60) was implemented in cr.pl to calculate wavelength-dependent emission using the 

MCNP6 energy-dependent F1 tally data.
7
  The results are shown plotted in Fig.8. The tally 

binning causes the slight piecewise structure. The results for 1000 histories give a non-smooth 

structure to the emission profiles. Execution using 10000 source electrons improves the results. 

The underlying structure suggests a bluish/violet color at the surface of the water per Fig. 3. Here 

again applicability of the Cauchy expression is to gases may be causing the exaggerated emission 

at short wavelengths versus the Sellmeier and constant refractive indices (Born and Wolf, 1980, 

pp. 93–97). 

                                                 
7
 The MCNP6 F1 energy-dependent tally data were placed in files F11CE and F11SE for input and use by cr.pl to 

produce wavelength-dependent data for plotting. 
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Figure 8. Cerenkov emission spectrum at the surface of the water for 4-MeV electrons in water 
calculated using MCNP6 (patched). NPS = 1000 (left) and 10000 (right). 

 

     The Cerenkov emission in Fig. 8 shows a steep drop at approximately 0.76 m. This emission 

behavior was investigated two ways. First, Figure 9 shows the CDFs for 4-MeV electrons in 

water as calculated using the Cauchy and Sellmeier formulations. The CDFs are well behaved.  
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Figure 9. CDFs for 4-MeV electrons in water calculated using Cauchy and Sellmeier 
formulations. 

Second, an additional array, cpsave, was added to subroutine emit_cerenkov.F90 for debugging 

studies. As the wavelength for each optical photon was sampled during a calculation, cpsave was 

incremented (by one) and the energy bin recorded. At the end of the calculation, the array 

contents were printed. Those data are plotted in Fig. 10. As is apparent, there is no abrupt drop in 

the higher wavelength bins. Something is thus impacting the F1 tallies, Fig. 8. 
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Figure 10. Sampled photon emission in subroutine emit_cerenkov.F90 for 4-MeV electrons in 
water calculated using Cauchy and Sellmeier formulations. 

 

 

     Execution was tested using analog and biased Cerenkov photon creation. The bias factor 

ckvnum was set to 0.1, meaning that 10% of the photons created using analog execution were 

created. Execution time for 2000 source electrons for analog and biased execution required 3.4 m 

and 1.9 m, respectively. Results were the same for analog and biased simulations. 

 

3.2. Test 2: 4000-MeV alphas in Water 

      

     The MCNP6 model consists of a point source of 4000-MeV alphas a sphere 50 cm in 

diameter.  Photon production is by the emission formula in Eq.(14). The refractive index is 
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calculated using the Cauchy and Sellmeier expressions given in Eqs.(55) and (56), respectively, 

using the data in Section 3.2. In addition, a calculation is executed using the first term in the 

Cauchy formulation for the refractive index, 1.3199 (―constant‖ calculation). 

 

     The test file is inpcra. The F11 photon-tally calculations were executed with a serial Intel 

build on the Pete cluster using 1000 source histories. Execution using the Cauchy, Sellmeier, and 

constant expressions required 1.73, 0.60, and 0.48 minutes, respectively. Relative uncertainties in 

the F1 tallies were on the order of 0.03 or less for each calculation. 

 

     MCNP6 execution required the use of phys:a 4000 to set EMAX = 4000. This permits 

MCNP6 to treat energies above the normal maximum energy. MCNP6 calculates the value L = 

2.1675 cm for the first condensed-history step for a 4000-MeV alpha in water. This value was 

used in cr.pl for the analytical calculations. 

 

 

     Figure 11 shows the results calculated using MCNP6 and cr.pl for the termwise evaluation of 

Eq.(14) with the Cauchy and Sellmeier refractive index formulations in Eqs.(55) and (56). The 

MCNP6 and cr.pl results are identical for the Cauchy and Sellmeier formulations. The emission 

for the Cauchy and Sellmeier formulations is in good agreement above 0.35 m.  At shorter 

wavelengths, the predictions diverge – perhaps due to the experimental Cauchy and Sellmeier 

coefficients and/or regimes of applicability (discussion associated with Eqs.(52)–(56)).  
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Figure 11. Cerenkov emission spectrum for 4000-MeV alphas in water calculated using MCNP6 
(patched) and cr.pl. Identical results are obtained using both codes. 

The total number of emitted photons calculated using the three refractive-index formulations are 

listed in Table 2. All results are identical for MCNP6 and cr.pl. The predictions for the Cauchy 

refractive index are almost 30% greater than that for the constant refractive index. The prediction 

made using the Sellmeier data are within 10% of the prediction made using the constant 

refractive index. 

 

 
Table 2.  Total Cerenkov emission for 4000-MeV alphas in 2.1675 cm water 

calculated using Eq.(14) 

Refractive Index 

Formulation 

     Total Cerenkov 

    Photon Emission 

Constant             3755.6              

Cauchy             5982.9            

Sellmeier             4424.0            
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     The MCNP6 Equation (60) was used to calculate wavelength-dependent emission using the 

MCNP6 F1 tally data. The MCNP6 F1 tally was calculated using logarithmic 200 bins between 1 

eV and 1 keV, and 20 bins between 1 keV and 1 MeV. The results are shown in Fig. 12. It is 

interesting to note that 1000 histories provided results that were converged so as to give 

smoothly varying and visually appealing results. The underlying structure suggests a 

bluish/violet color at the surface of the water per Fig. 3. 

 

Figure 12. Cerenkov emission spectrum at the surface of the water for 4000-MeV alphas in 
water calculated using MCNP6 (patched).  

     Figure 13 shows the CDFs for 4000-MeV alphas in water as calculated using the Cauchy and 

Sellmeier formulations. The CDFs are well behaved, but differ somewhat from the CDFs for 4-

MeV electrons in water. 
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Figure 13. CDFs for 4000-MeV alphas in water calculated using Cauchy and Sellmeier 
formulations. 

The cpsave data for are plotted in Fig. 14. As is apparent, there is no abrupt drop in the higher 

wavelength bins. Something is thus impacting the F1 tallies, Fig. 12. 
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Figure 14. Sampled photon emission in subroutine emit_cerenkov.F90 for 4-MeV electrons in 
water calculated using Cauchy and Sellmeier formulations. 

 

     Execution was tested using analog and biased Cerenkov photon creation. The MCNP6 input 

file bias factor ckvnum was set to 0.1, meaning that 10% of the photons created using analog 

execution were created.  

 

4. VALIDATION SIMULATIONS 

 

Simulations validating the results against experiments were not performed. No satisfactory 

validation data could be found.  
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5. SUMMARY AND CONCLUSIONS 

 

 

     The Los Alamos MCNP6 code has been upgraded to treat Cerenkov photon emission. The 

feature includes three options for the refractive index calculation: (1) constant (wavelength 

invariant), (2) the Cauchy form, which is appropriate for gases, and (3) the Sellmeier expression, 

which is suitable for liquids and solids. 

 

      In support of this feature, verification calculations have been executed for models of (1) 4-

MeV electrons in water and (2) 4000-MeV alpha particles in water. The results show that the 

emission spectra for Cerenkov radiation are executed correctly by MCNP6 for a serial Intel 

executable. The F1 tally for optical photon emission at the surface of the water may show 

questionable behavior. MPI parallel execution gives F1 tallies results are in close agreement with 

their serial counterparts for electron and alpha models using constant, Cauchy and Sellmeier 

refractive indices.  
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